Li-air batteries have attracted extensive attention because of their ultrahigh theoretical energy density. However, the potential safety hazard of flammable organic liquid electrolytes hinders their practical applications. Replacing liquid electrolytes with solidstate electrolytes (SSEs) is expected to fundamentally overcome the safety issues. In this work, we focus on the development and challenge of solid-stateLi-air batteries (SSLABs). The rise of different types of SSEs, interfacial compatibility and verifiability in SSLABs are presented. The corresponding strategies and prospects of SSLABs are also proposed. In particular, combining machine learning method with experiment and in situ (or operando) techniques is imperative to accelerate the development of SSLABs.
|