[期刊论文]


Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings

作   者:
Milena Barać;Milan Petrović;Nina Petrović;Nataša Nikolić-Jakoba;Zoran Aleksić;Lidija Todorović;Nataša Petrović-Stanojević;Marina Anđelić-Jelić;Aleksandar Davidović;Jelena Milašin;Jelena Roganović;

出版年:2023

页    码:6727 - 6727
出版社:MDPI AG


摘   要:

Type 2 diabetes mellitus (T2DM) is associated with functional deterioration of the salivary gland and dental pulp, related to oxidative stress. The aim was to integrate experimental and bioinformatic findings to analyze the cellular mechanism of melatonin (MEL) action in the human parotid gland and dental pulp in diabetes. Human parotid gland tissue was obtained from 16 non-diabetic and 16 diabetic participants, as well as human dental pulp from 15 non-diabetic and 15 diabetic participants. In human non-diabetic and diabetic parotid gland cells (hPGCs) as well as in dental pulp cells (hDPCs), cultured in hyper- and normoglycemic conditions, glial cell line-derived neurotrophic factor (GDNF), MEL, inducible nitric oxide synthase (iNOS) protein expression, and superoxide dismutase (SOD) activity were measured by enzyme-linked immunosorbent assay (ELISA) and spectrophotometrically. Bioinformatic analysis was performed using ShinyGO (v.0.75) application. Diabetic participants had increased GDNF and decreased MEL in parotid (p < 0.01) and dental pulp (p < 0.05) tissues, associated with increased iNOS and SOD activity. Normoglycemic hDPCs and non-diabetic hPGCs treated with 0.1 mM MEL had increased GDNF (p < 0.05), while hyperglycemic hDPCs treated with 1 mM MEL showed a decrease in up-regulated GDNF (p < 0.05). Enrichment analyses showed interference with stress and ATF/CREB signaling. MEL induced the stress-protective mechanism in hyperglycemic hDPCs and diabetic hPGCs, suggesting MEL could be beneficial for diabetes-associated disturbances in oral tissues.



关键字:

暂无


全文
所属期刊
International Journal of Environmental Research and Public Health
ISSN:
来自:MDPI AG