[期刊论文]


Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima: stability and binding properties

作   者:
Doris Wassenberg;Wolfgang Liebl;Rainer Jaenicke;

出版年:2000

页     码:279 - 288
出版社:Elsevier BV


摘   要:

Recombinant maltose-binding protein from Thermotoga maritima (TmMBP) was expressed in Escherichia coli and purified to homogeneity, applying heat incubation of the crude extract at 75 degrees C. As taken from the spectral, physicochemical and binding properties, the recombinant protein is indistinguishable from the natural protein isolated from the periplasm of Thermotoga maritima. At neutral pH, TmMBP exhibits extremely high intrinsic stability with a thermal transition >105 degrees C. Guanidinium chloride-induced equilibrium unfolding transitions at varying temperatures result in a stability maximum at approximately 40 degrees C. At room temperature, the thermodynamic analysis of the highly cooperative unfolding equilibrium transition yields DeltaG(N-->U)=100(+/-5) kJ mol(-1 )for the free energy of stabilization. Compared to mesophilic MBP from E. coli as a reference, this value is increased by about 60 kJ mol(-1). At temperatures around the optimal growth temperature of T. maritima (t(opt) approximately 80 degrees C), the yield of refolding does not exceed 80 %; the residual 20 % are misfolded, as indicated by a decrease in stability as well as loss of the maltose-binding capacity. TmMBP is able to bind maltose, maltotriose and trehalose with dissociation constants in the nanomolar to micromolar range, combining the substrate specificities of the homologs from the mesophilic bacterium E. coli and the hyperthermophilic archaeon Thermococcus litoralis. Fluorescence quench experiments allowed the dissociation constants of ligand binding to be quantified. Binding of maltose was found to be endothermic and entropy-driven, with DeltaH(b)=+47 kJ mol(-1) and DeltaS(b)=+257 J mol(-1) K(-1). Extrapolation of the linear vant'Hoff plot to t(opt) resulted in K(d) approximately 0.3 microM. This result is in agreement with data reported for the MBPs from E. coli and T. litoralis at their respective optimum growth temperatures, corroborating the general observation that proteins under their specific physiological conditions are in corresponding states. Copyright 2000 Academic Press.



关键字:

folding; ligand binding; maltose-binding protein; stability; Thermotoga maritima


所属期刊
Journal of Molecular Biology
ISSN: 0022-2836
来自:Elsevier BV