[期刊论文]


Physiologically Based Simulations of Deuterated Glucose for Quantifying Cell Turnover in Humans

作   者:
Julio Lahoz-Beneytez;Stephan Schaller;Derek Macallan;Thomas Eissing;Christoph Niederalt;Becca Asquith;

出版年:2017

页    码:474 - 474
出版社:Frontiers Media SA


摘   要:

In vivo [6,6-(2)H2]-glucose labeling is a state-of-the-art technique for quantifying cell proliferation and cell disappearance in humans. However, there are discrepancies between estimates of T cell proliferation reported in short (1-day) versus long (7-day) (2)H2-glucose studies and very-long (9-week) (2)H2O studies. It has been suggested that these discrepancies arise from underestimation of true glucose exposure from intermittent blood sampling in the 1-day study. Label availability in glucose studies is normally approximated by a "square pulse" (Sq pulse). Since the body glucose pool is small and turns over rapidly, the availability of labeled glucose can be subject to large fluctuations and the Sq pulse approximation may be very inaccurate. Here, we model the pharmacokinetics of exogenous labeled glucose using a physiologically based pharmacokinetic (PBPK) model to assess the impact of a more complete description of label availability as a function of time on estimates of CD4+ and CD8+ T cell proliferation and disappearance. The model enabled us to predict the exposure to labeled glucose during the fasting and de-labeling phases, to capture the fluctuations of labeled glucose availability caused by the intake of food or high-glucose beverages, and to recalculate the proliferation and death rates of immune cells. The PBPK model was used to reanalyze experimental data from three previously published studies using different labeling protocols. Although using the PBPK enrichment profile decreased the 1-day proliferation estimates by about 4 and 7% for CD4 and CD8+ T cells, respectively, differences with the 7-day and 9-week studies remained significant. We conclude that the approximations underlying the "square pulse" approach-recently suggested as the most plausible hypothesis-only explain a component of the discrepancy in published T cell proliferation rate estimates.



关键字:

Deuterium labelling; T cell kinetics; Cell turnover; mathematical modelling; Systems Biology


全文
所属期刊
Frontiers in Immunology
ISSN:
来自:Frontiers Media SA